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1. [Bloch’s theorem] From quantum mechanics we know a theorem claiming that two commut-
ing Hermitian operators possess a complete joint eigensystem in the Hilbert space. Using
this theorem as a starting point, demonstrate existence of a complete orthonormal system
of eigenfunctions of a (non-Hermitian) translation operator T̂d ≡ ed·∇ that are also eigen-

functions of the Hamiltonian Ĥ = p̂2

2m + V (x), V (x+ d) = V (x). Note: the spectrum of Ĥ
may well be degenerate.

2. Trans-polyacetylene (CH)n is a linear polymer, which is known to develop a conjugated
(delocalized) orbital from one pz orbital per each of the carbon atoms. It is also known to
dimerize, i.e., to exist in the form with alternating ‘single’ (weaker) and ’double’ (stronger)
bonds (−CH = CH−)n. From the tight-binding standpoint, such a system is described by
the Su–Schrieffer–Heeger (SSH) model with the Hamiltonian

Ĥ =

∞∑
n=−∞

∑
σ=±

{
uĉ†2n,σ ĉ2n+1,σ + vĉ†2n,σ ĉ2n−1,σ

}
+ h.c.

featuring ‘single-bond’ and ‘double-bond’ hopping integrals u, v ∈ C and two possible spin
projections σ. Find the energy dispersion relation ε(k) for this TB model, the energy gap,
and the effective mass at the lowest point of the conduction band (ε > 0). Note: mind the
unit cell first! Also note that the system is at half-filling so just half the total number of
states are occupied!

3. Find the Brillouin zone for a 2D honeycomb lattice (lattice parameter d) and, by translating
certain pieces of it by reciprocal-lattice vectors, transform it into a hexagon. After such a
visual rearrangement, the Brillouin zone explicitly respects the rotational symmetry of the
honeycomb lattice.

4. Express a Hartree–Fock two-electron ground-state wave function for a helium atom (Z =
N = 2,S2 = 0) in terms of a single unknown scalar function. Approximating this func-
tion as (a) a hydrogenlike 1s orbital, (b) a linear combination of a reasonable number of
hydrogenlike orbitals, find the HF ground-state energies. Also find the RMS charge radii√

1
2

∫
n(x)x2d3x, where n(x) is the total charge density of the two electrons, in units of e.

Note: numerical calculations are not forbidden here.

5. Find the density profile n(r) for a neutral atom with the nucleus charge −Ze using the
Thomas–Fermi equation (let us assume that this solution is spherically symmetric). Namely,
(i) find the form of the r → ∞ and r → 0 asymptotics of the ‘internal potential’ vi(r) and
the density, (ii) find the chemical potential, (iii) place appropriate boundary conditions at
r → ∞ and the r → 0 and solve this boundary-value problem numerically, e.g., using the
shooting method.

6. [Low-density LDA] Find the leading coefficient g0 in the exchange-correlation energy of a
dilute homogeneous electron gas of density n,

εxc = g0n
1/3 +O(n1/2), n→ 0.

Hint: Estimate the ground-state energy E[n] = 〈gnd| Ĥ |gnd〉 of such a gas from QM pertur-
bation theory in the Coulomb interaction and then extract the exchange-correlation energy
from E[n] using DFT definitions.
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7. [Friedel oscillations] A linear semi-infinite chain of atoms is described by a tight-binding
model at half-filling with nearest-neighbor transfer integrals equal to −t. Calculate the
average on-site electron numbers n(j) =

∑
σ〈ĉ
†
jσ ĉjσ〉 as a function of the site number j =

1, 2, 3, . . .. Compare your result with the 2D case of a half-plane with a square lattice.

8. Show that for a lattice with the primitive cell containing only one lattice site, the electron
Green’s function in the tight-binding model is

Gσσ′(x,y, t) ≡ −i 〈FS|Tĉσ(x, t)ĉ†σ′(y, 0) |FS〉

= δσ,σ′

+∞∫
−∞

e−iωtdω

2π

∑
k∈BZ

eik(x−y)

Ω

{
ϑ(εk − εF)

ω − εk + i0
+
ϑ(εF − ε−k)

ω − ε−k − i0

}
,

where Ω is the total number of the lattice sites (= the number of points in the Brillouin
zone), εk is the spectrum of 1-particle energies, and εF is the Fermi energy. Note: prove and
then use the identity on the Heaviside ϑ function

ϑ(t)e−iΩt =

+∞∫
−∞

idω

2π

e−iωt

ω − Ω + i0
.

9. Let us look at a hydrogen H2 molecule from a Hubbard model perspective

Ĥ = −t(d)
∑
σ=↑,↓

{
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

}
+ U

∑
i=1,2

n̂i↑n̂i↓, N = 2.

Here, we have only two sites i = 1, 2 and four creation operators ĉ†iσ; the transfer integral
strongly depends on the orbital overlap, so it is assumed to depend on the distance d between

the two nuclei. Using the fact that the four operators Ŝ
2

= (Ŝ1 + Ŝ2)2, Ŝz = Ŝ1z + Ŝ2z,

P̂ , and N̂ =
∑
i,σ ĉ

†
iσ ĉiσ commute with each other and with Ĥ, find the energies and wave

functions of triplet S = 1 and singlet S = 0 states of the molecule. The parity operator
simply exchanges the two sites, P̂−1ĉiσP̂ := ĉ3−i,σ. Compare your results with the tight-
binding (U = 0) case.

10. Find the divergent part of the density of states for a tight-binding model on a 2D square
lattice with all NN hopping integrals equal to t

ρ(ε) =
N

π2t
log

t

|ε|
+O(1), ε→ 0 (lattice units, d = 1).

This Van Hove singularity takes place exactly at the Fermi surface in the case of half-filling.

11. Apply a Bogolyubov transformation to the mean-field BCS Hamiltonian

Ĥ − µN̂ =
∑
kσ

(εk − µ)ĉ†kσ ĉkσ −
∑
k

{
∆∗ĉ−k↓ĉk↑ + h.c.

}
+

V

a3U0
|∆|2,

ĉk↑ = u∗kγ̂k↑ + vkγ̂
†
−k↓,

ĉ†−k↓ = −v∗kγ̂k↑ + ukγ̂
†
−k↓,

where |uk|2 + |vk|2 = 1. By finding the appropriate uk, vk coefficients, eliminate the particle
number violating terms and find the quasiparticle energies as a function of ∆.

12. Consider a graphene sheet with a small Kekulé distortion of the lattice, which corresponds
to

Ĥ = −
∑
x∈A

∑
j=1,2,3

(t+ ∆tj(x))b̂†σ(x+ δj)âσ(x) + h.c.,

∆tj(x) =
κ

3

{
ei(Q·x+k+·δj) + c.c.

}
→ 0,
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where Q ≡ k+−k− is the vector connecting the two Fermi points of pristine graphene. Find
the effective Dirac equation describing quasiparticles near the Fermi surface that results from
such a perturbation (N.B.: it will mix the two Fermi points!).

13. Find the one-particle eigenstates and their energies for the π-band electrons in graphene
in the external magnetic field B = Bez orthogonal to the graphene plane (neglecting the
Zeeman interaction σµBB). Use the potential A(x) = eBxey.

14. In the ξ = 1 gauge, integrate out the photon field Aµ in the partition function Z[ξσ, ξ̄σ]
for the π electrons in graphene (ξσ(x), ξ̄σ(x) are the sources conjugate to the spinor fields
Ψ̄σ(x),Ψσ(x), respectively). As a result, find the effective action for the interacting graphene
and resort to its nonrelativistic limit

Seff[Ψσ, Ψ̄σ] =

∫
d3xΨ̄σ(x) i(γ0∂0 + vFγ ·∇) Ψσ(x)

− e2

8π

∫
dtd2xd2y

Ψ̄σ(x)γ0Ψσ(x) Ψ̄ς(y)γ0Ψς(y)

|x− y|
. (1)

15. From the above action (1), find the one-loop self-energy Σ(p) of a quasiparticle (elec-
tron/hole) in graphene. Namely, use a momentum cutoff |q| ≤ Λ → +∞ and demonstrate
that

≡ Σ(p) = − ie2

32π
γ · p

(
log

p2

Λ2
− 4 log 2

)
.

Insert an appropriate counterterm into the action (1) and express the resulting renormalized
Fermi velocity vren

F (p2) in terms of the bare Fermi velocity and the normalization scale µ.
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